From social contracts to climate agreements, individuals engage in groups that must collectively reach decisions with varying levels of equality and fairness. These dilemmas also pervade Distributed Artificial Intelligence, in domains such as automated negotiation, conflict resolution or resource allocation. As evidenced by the well-known Ultimatum Game --- where a Proposer has to divide a resource with a Responder --- payoff-maximizing outcomes are frequently at odds with fairness. Eliciting equality in populations of self-regarding agents requires judicious interventions. Here we use knowledge about agents’ social networks to implement fairness mechanisms, in the context of Multiplayer Ultimatum Games. We focus on network-based role assignment and show that preferentially attributing the role of Proposer to low-connected nodes increases the fairness levels in a population. We evaluate the effectiveness of low-degree Proposer assignment considering networks with different average connectivity, group sizes, and group voting rules when accepting proposals (e.g. majority or unanimity). We further show that low-degree Proposer assignment is efficient, not only optimizing fairness, but also the average payoff level in the population. Finally, we show that stricter voting rules (i.e., imposing an accepting consensus as requirement for collectives to accept a proposal) attenuates the unfairness that results from situations where high-degree nodes (hubs) are the natural candidates to play as Proposers. Our results suggest new routes to use role assignment and voting mechanisms to prevent unfair behaviors from spreading on complex networks.